Week 8 $Ex5AOS$ Problem $|:$ Let \vee be a vector space and TEZ(V). Suppose {Ui}ier is a collection of T-invariant subspaces
of V. Prove that (2 Ui is a T-invariant subspace of V. $Sol^a: Re call that a subspace U of V is said to be T-invar.$ if $TueV \forall \omega \in U$. $Pick$ $ue.f.U.$ Then $u f.$ $Uif.$ Since U_i is T-invar, $T_{\mu} \in U_i$. This is true for all $i \in I$. Therefore $Tu \in \bigcap_{i\in I} U_i$ and hence $\bigcap_{i\in I} U_i$ is T-invar. EesAozz Problem 2 Suppose $TeLCU$ and \exists non zero $v, w \in V$ s.f. $T_{V=3w}$ and $T_{W=3v}$ Prove that $3 \text{ or } -3$ is an eigenvalue of T S_0 ³ Note that $T(v_{rw}) = Tv + Tw = 3v - 3(v_{tw})$ Recall that $\lambda \in \mathbb{F}$ is an eigenvalue of T if \exists NON-ZERO vector v.EV s.t. Tv.= Av. Hence 3 is an eigenvalue if VfW \neq 0. However, if vfW=0 then $V-W=(V+W)-2W=-2W$ \neq 0 Since $w \neq o$ and $2 \neq o$. There fore $V(v-w) = Tv - Tw = 3w - 3v = -3(v-w)$ and -3 is an eigenvalue of T.

Expace of the
$$
Im\{F(z)\}
$$
 and $Im\{F(z)\}$ and $Im\{F(z)\}$.

\nSubstituting the $Im\{F(z) = \sum_{i=1}^{n} F(z_i)$ and $Im\{F(z) = \sum_{i=1}^{n} F(z_i)$.

\nSubstituting the probability of the $Im\{F(z) = \sum_{i=1}^{n} F(z_i)$ and $Im\{F(z) = \sum_{i=1}^{n} F(z_i)$

Friedberg
§5.4 023 Problem 4 Let T be a linear operator on a fin. Jim. v. sp V and W is a T-invar. Subspace of V. Suppose that $v_1, \cdots, v_n \in V$ are eigenvectors of T corr. to distinct eigenvolues $\lambda_1, \ldots, \lambda_n$ et F . Suppose further that $V_1 + \cdots + V_n \in W$. Show that $V_i \in W \cup V_{i}$ Solⁿ Use M. I. The case n=1 is tautology $(v,\infty) \Rightarrow v,\infty)$
Assume case n=k is true for some the integer k. For the case n=ktl, note that $T_{U_1} + \cdots + U_n = \lambda_{V_1} + \cdots + \lambda_n V_n$ $Sine$ Wis T-inver. Also $\lambda_{n}(v_{1}+...+v_{n})\in W$ and $(T - \lambda_n I)(v_1 + \cdots + v_n) = (\lambda_1 - \lambda_n)v_1 + \cdots + (\lambda_{n-1} - \lambda_n)v_{n-1} \in W$ Since $\lambda_i - \lambda_n$ to for $i=1, \dots, n-1$ $(\lambda_i - \lambda_n)v_i$ to and $T(\lambda_i - \lambda_n)v_i) = (\lambda_i - \lambda_i) T v_i = \lambda_i (\lambda_i - \lambda_i)v_i$ $\lambda_i - \lambda_i v_i = \lambda_i (\lambda_i - \lambda_i)v_i$ and distinct for i=1. And By induction hypothesis \therefore $V_1 + V_2 + \cdots + V_{n-1}$ $\in \mathbb{W}$ \therefore $V_n \in \mathbb{W}$.

Problem5 If T is a diagonalizable linear operator on a finite-dimension-
vector space and W is a notifivial T-invar. Subspace of V, prove
that The is a diagonalizable linear operator on W Friedberg 85.4024 $Sh^{\mathfrak{a}}$ Since T is diagonalizable, if λ , λ are all eigenvalue
Then $V = E(\lambda, \tau) \oplus \cdots \oplus E(\lambda, \tau)$ (X) $We claim that W = \bigoplus_{i=1}^{n} (E(\lambda_i, T) \cap W) \wedge \text{det } E(\lambda_i, T) \cap W$
 $+ \sum_{i=1}^{n} E(\lambda_i, T) \wedge \text{det } S_{nm} = E(\lambda_i, T) \wedge W$ Since Σ ECT;, T) is a direct sum if $v_i \in E(\lambda_i, \tau) \cap W$ sit, $\sum_{i=1}^{K} v_i = 0$ then $v_i = 0$ Vi : E(i, Th) is a direct sum. $H = \sum_{i=1}^{m} E(\lambda_i, T_w) = h$ "C" is clear. D Let we W By (*) $\exists v_i \in E(\lambda_i,T)$ 5.4, $W = \sum_{i=1}^{n} V_i$ $\in W$ $|f|$ some $V_i = \overrightarrow{O}$ we may ignore them since these v; belong W already. Hence we may assume the remaining v_1 are eigenvectors. By previous problem, $v_i \in W$ $\forall i$ $\therefore v_i \in E(\lambda_i, T) \cap W$ V; Note that if λ is an eigenvalue of $T|_W = \exists v \in W$ v=0 s.1. $T|_W(v) = \lambda v$ This v is then also an eigenvector of T and λ is also an eigenvalue of V Therefore $W = \bigoplus_{i=1}^n E(\lambda_i, T|_W)$ is a decomposition of W into eigenspaces. (Some $E(\lambda_i, T|_W)$ may be the trivial $Shbspace$).