Week 8 Ex5AQ5 Problem 1: Let V be a vector space and TEZ(V). Suppose {Ui}ier is a collection of T-invariant subspaces of V. Prove that ier U: is a T-invariant subspace of V. Sol": Recall that a subspace U of V is said to be T-invar. if THEU YHEU. Pick us of V: Then u & V; VieI. Since Ui is T-invar, TUEUI. This is true for all iEI. Therefore Tu E: Ti and hence in Vi is T-invar, ErSAOZZ Problem 2 Suppose TEL(U) and I non zero V, WEV s.t. TV=3W and Tw=3V Prove that 3 or -3 is an eigenvalue of T Sol² Note that $T(v_{tw}) = Tv + Tw = 3w + 3v = 3(v_{tw})$ Recall that REF is an eigenvalue of T if 3 NON-ZERO vector V.EV s.t. TV.= Av. Hence 3 is an eigenvalue if Vtw #0. However, if vtw=0 then v-w=(v+w)-2w=-2w #0 Since W to and 2to. Therefore $\Gamma(v-w) = Tv - Tw = 3w - 3v = -3(v-w)$ and -3 is an eigenvalue of T.

Forblem 3 Give an example of Te
$$\lambda(\mathbb{R}^2)$$
 s.t. $T^4 = T$.
Sol⁵ Note that $x^4 + (-c^2 - 5z + i)(x^2 + 3z + i)$.
It suffices to find $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^2 - 5z T + I = T_0$.
the zero transformation.
We may generative the problem into:
Suppose file,..., end is a basis of a v.sp. V and
 $p(x) = x^* + a_{n-1}x^{n+1} + \dots + a_n$ is a polynomial over I^2 .
Then there exists a linear map $T \in \mathcal{L}(V)$ s.t.
 $p(T) = T_0$.
Pf: Define $T : V \ni V$ by $Te_i = e_{i+1}$ for $i=1, \dots, n+1$ and
 $Te_n = \frac{2}{2n} - a_{i+1}e_i$.
We doek that $p(T) = T^{n+1} + a_{n-1}T^{n-1} + a_n T_{n-1}^{n-1}$.
Therefore $(K) \Rightarrow T(T^{n+1}e_i) = \frac{1}{2n} - a_{i-1}T^{1-1}e_i$
 $\Rightarrow T^2e_i + \frac{1}{2n}a_i T^2e_i = 0$
 $\Rightarrow p(T) e_i = 0$.
Now $p(T)e_i = p(T) T^{1/2}e_i = T^{1-1}p(T)e_i = 0$
Therefore by uniqueness $p(T) = T_0$.
We have $M(T, \beta) = \begin{bmatrix} 0 & \cdots & 0 & -a_{n-1} \\ 1 & \ddots & 1 & \cdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{bmatrix}$.
For the original problem, we may take the linear transformation
 T defined by $T(1, 0) = (a_{-1})$ and $T(a, i) = Jz(a_{-1}) - (a_{-1})$.
Note $M(T, \beta) = \begin{bmatrix} 0 & -1 \\ 1 & \sqrt{2} \end{bmatrix}$.
Check divectly fluet $A^4 + I = 0$

Friedberg \$5.4 Q23 Problem 4 Let T be a linear operator on a fin. Jim. V. sp V and W is a T-invar. subspace of V. Suppose that VI, ..., Vn EV are eigenvectors of T corr. to distinct eigenvalues $\lambda_1, \dots, \lambda_n \in IF$. Suppose further that $V_1 + \dots + V_n \in W$. Show that V; EW Hi. Sol Use M.I. The case n=1 is tautology (V,EW => V,EW). Assume case n=k is true for some the integer k. For the case n=ktl, note that $T(v_1 + \cdots + v_n) = \lambda v_1 + \cdots + \lambda_n v_n$ Since Wis T-invar. Also An (V, +...+Vn) GW and $(T - \lambda_n I)(v_1 + \dots + v_n) = (\lambda_1 - \lambda_n)v_1 + \dots + (\lambda_{n-1} - \lambda_n)v_{n-1} \in W$ Since $\lambda_i - \lambda_n \neq 0$ for $i = 1, \dots, n-1$ $(\lambda_i - \lambda_n) v_i \neq 0$ and $T((\lambda_i - \lambda_n)v_i) = (\lambda_i - \lambda_n) Tv_i = \lambda_i (\lambda_i - \lambda_n)v_i$ is an eigenvector of T and distinct for i=1,..., n-1. By induction hypothesis (1;-1), view for i=1,..., n-1 . VI + V2 + ·· + VA- EW ... VAEW.

Problem 5 If T is a diagonalizable linear operator on a finite-dimensional vector space and W is a nontrivial T-invar. Substace of V, prove that The is a diagonalizable linear operator on W Friedberg §5.4 Q24 Sol^e Since T is diagonalizable, if $\lambda_1 \cdots \lambda_n$ are all eigenvalue then $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_n, T) \longrightarrow (X)$ We claim that $W = \bigoplus (E(\lambda_i, T) \cap W) (Note E(\lambda_i, T) \cap W)$ + $\sum_{i=1}^{n} E(\lambda_i, Thw)$ is a direct sum $= E(\lambda_i, Thw)$. Since ZE(A;, T) is a direct sum if vie E(Ai, T) AW sit, Žui = o then vi= o ti $\sum_{i=1}^{n} E(\lambda_i, T|w)$ is a direct sum, $F = \sum_{i=1}^{\infty} E(X_i, T|w) = W$ "C" is clear. > Let wEW By (*) I vi E E(7;,T) S.t. $W = \sum_{i=1}^{n} V_i \in W$ if some $V_i = \overline{O}$ we may ignore them since these v; belong W already. Hence we may assume the remaining VI are eigen vectors. By previous problem, VIEW 41 .. vie E(a;,T) (W Vi Note that if & is an eigenvalue of TIW ZVEW V= o s.t. TIW(v)= AV This v is then also an eigenvector of I and Lis also an eigenvalue of V Therefore $W = \bigoplus E(\lambda_i, T|w)$ is a decomposition of Winto eigenspaces. (Some E(Ai, Thw) may be the trivial Subspace).